Received 18 August 2006

Accepted 6 December 2006

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

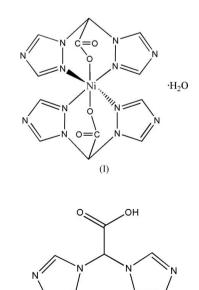
Yun Ling, Hong-Yan Gao and Lei Zhang*

Department of Pharmaceutical Engineering, School of Chemical and energy Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China

Correspondence e-mail: lzhangce@scut.edu.cn

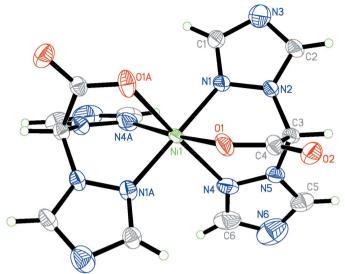
Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.008 Å H-atom completeness 84% Disorder in solvent or counterion R factor = 0.050 wR factor = 0.160 Data-to-parameter ratio = 13.1

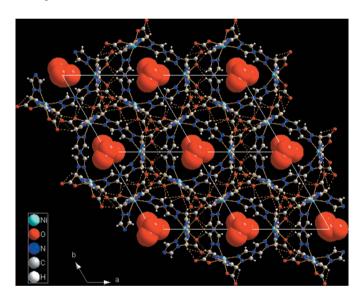

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[Bis(triazol-1-yl)acetato]nickel(II) monohydrate

The title complex, $[Ni(C_6H_3N_6O_2)_2]\cdot H_2O$, contains an Ni^{II} ion on a twofold axis bound to two tridentate chelating bis(triazol-1-yl)acetate anions and one uncoordinated water molecule. In the complex, weak intermolecular $C-H \cdots O$ hydrogen bonds interconnect units to form a three-dimensional net with onedimensional channels along the *c*-axis direction occupied by disordered water molecules.


Comment

Since Trofimenko (1967) first modified poly(pyrazol-1-yl)borate ligands using 1,2,4-triazole to form poly(triazol-1-yl)borate ligands which combine the coordination properties of both pyrazoles and imidazoles, considerable attention has been paid to their applications in coordination polymers (Lobbia et al., 1991; Janiak, 1994; Shiu et al., 1994; Macleod et al., 1996). Compared with poly(triazolyl)borate ligands, similar substitutions of bis(1,2,4-triazol-1-yl)methanes (BTM) have been explored in coordination and metal-organic chemistry (Tang et al., 2000; Tang et al., 2002; Effendy et al., 2003; Effendy et al., 2004), acting as chelating ligands with endodentate N atoms (Tang et al., 2002), as bridging ligands with exodentate N atoms (Tang et al., 2000; Effendy et al., 2004), or coordinated to the metal center in both coordination modes (Effendy et al., 2003). A mononuclear nickel(II) complex (I) was synthesized with a new bis(1,2,4-triazol-1yl)acetic acid (Hbta) ligand and its structure determined by single-crystal X-ray diffraction.


Hbta

© 2007 International Union of Crystallography All rights reserved

The molecular structure of the title complex, with displacement ellipsoids drawn at the 30% probability level. [Symmetry code: (A) x - y, -y, $-z + \frac{1}{3}$.]

The title complex, viewed along the c axis, illustrating the onedimensional channels occupied by disordered water molecules.

In the title complex, the Ni^{II} ion, situated on a twofold axis, has slightly distorted octahedral geometry (Table 1 and Fig. 1), in which the equatorial plane contains two endodentate triazole N atoms [N4 and N4ⁱ, symmetry code: (i) x - y, -y, $-z + \frac{1}{3}$] and two carboxylate O atoms (O1 and O1ⁱ) with the largest deviation of 0.0047 Å, at O1. The axial positions are occupied by the other endodentate N atoms of the bta ligand (N1 and N1ⁱ). In this complex, the ligand bis(1,2,4-triazol-1yl)acetic acid (Hbta) is tridentate and chelates to the Ni^{II} ion with two endodentate N atoms from the triazoles [Ni1-N1 = 1.993 (4) Å and Ni1-N4 = 2.185 (6) Å] and one carboxylate O atom [Ni1-O1 = 2.142 (5) Å], generating three sixmembered metal-organic rings (Ni1-N1-N2-C3-N5-N4, Ni1-O1-C4-C3-N5-N4, Ni1-N1-N2-C3-C4O1) which exist in half-chair conformations. The plane of the carboxylate group is almost perpendicular to the sixmembered Ni1-N1-N2-C3-N5-N4 metal-organic ring [dihedral angle of 89.7 (3)°]. The two triazole rings in one bta ligand form a dihedral angle of 55.3 (4)°, larger than that of 45.4° found in $[Ag_3(BTM)_4](CF_3SO_3)_3]$ (Effendy *et al.*, 2003).

In the crystal structure, $C-H\cdots O$ hydrogen bonds (Table 2) interconnect the mononuclear Ni^{II} units, generating one-dimensional channels, occupied by disordered water molecules, along the *c*-axis direction (Fig. 2). These interactions help to stabilize the packing arrangement in the crystal structure.

Experimental

Nickel(II) perchlorate hexahydrate (0.5 mmol, 183.3 mg) was dissolved in distilled water (5 ml), and added to a solution of bis-(triazol-1-yl)acetic acid (0.5 mmol, 96.5 mg) in ethanol (5 ml). Sodium hydroxide (1 mol 1^{-1}) was added to give pH = 7.0, and the mixture was then refluxed for 2 h. It was slowly cooled to room temperature, filtered, and the filtrate was slowly evaporated at room temperature. Dark-green single crystals of the title complex suitable for X-ray diffraction were obtained after about four weeks (yield: 17%). CHN analysis found: C 31.12, H 2.31, N 36.39%; calculated for C₁₂H₁₂N₁₂Ni₀₅: C 31.17, H 2.38, N 36.36%.

Crystal data

 $\begin{array}{ll} [\mathrm{Ni}(\mathrm{C_6H_3N_6O_2})_2]\cdot\mathrm{H_2O} & D_x = 1.417 \ \mathrm{Mg \ m^{-3}} \\ M_r = 463.05 & \mathrm{Mo} \ K\alpha \ \mathrm{radiation} \\ \mathrm{Trigonal}, \ P_{3_2}21 & \mu = 0.94 \ \mathrm{mm^{-1}} \\ a = 12.406 \ (3) \ \mathrm{\AA} & T = 293 \ (2) \ \mathrm{K} \\ c = 12.211 \ (7) \ \mathrm{\AA} & \mathrm{Block}, \ \mathrm{green} \\ V = 1627.5 \ (11) \ \mathrm{\AA}^3 & 0.20 \times 0.14 \times 0.12 \ \mathrm{mm} \\ Z = 3 \end{array}$

Data collection

Bruker APEXII CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\min} = 0.860, T_{\max} = 1.000$ (expected range = 0.768–0.893)

Refinement

F

F

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1281P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.050$	where $P = (F_0^2 + 2F_c^2)/3$
$wR(F^2) = 0.160$	$(\Delta/\sigma)_{\rm max} < 0.001$
S = 1.12	$\Delta \rho_{\rm max} = 1.05 \ {\rm e} \ {\rm \AA}^{-3}$
1928 reflections	$\Delta \rho_{\rm min} = -0.52 \text{ e } \text{\AA}^{-3}$
147 parameters	Absolute structure: Flack (1983),
H-atom parameters constrained	821 Friedel pairs
	Flack parameter: 0.01 (3)

Table 1

Selected geometric parameters (Å, °).

Ni1-N1	1.993 (4)	Ni1-N4	2.185 (6)
Ni1-O1	2.142 (5)		
N1-Ni1-N1 ⁱ	178.9 (3)	N1 ⁱ -Ni1-N4 ⁱ	86.90 (18)
N1-Ni1-O1	86.31 (15)	O1-Ni1-N4 ⁱ	172.44 (18)
N1 ⁱ -Ni1-O1	92.89 (15)	O1-Ni1-N4	82.90 (17)
O1-Ni1-O1 ⁱ	89.5 (2)	N4 ⁱ -Ni1-N4	104.7 (3)
N1-Ni1-N4 ⁱ	93.79 (18)		

Symmetry code: (i) $x - y, -y, -z + \frac{1}{3}$.

8800 measured reflections

 $R_{\rm int} = 0.025$ $\theta_{\rm max} = 25.0^{\circ}$

1928 independent reflections

1792 reflections with $I > 2\sigma(I)$

Table 2	
Hydrogen-bond geometry (Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C1-H1···O2 ⁱⁱ	0.93	2.53	3.29	139
$C2-H2\cdots O2^{iii}$	0.93	2.41	3.23	148
C3-H3···O1 ⁱⁱⁱ	0.98	2.43	3.35	157
C5−H5···O1 ⁱⁱⁱ	0.93	2.55	3.31	139
$C5-H5\cdots O1^{iv}$	0.93	2.65	3.48	148

Symmetry codes: (ii) $-x + 1, -x + y, -z + \frac{2}{5}$; (iii) $-x + y + 1, -x + 1, z + \frac{1}{5}$; (iv) $-x + 1, -x + y + 1, -z + \frac{2}{3}$.

H atoms were placed in calculated positions $(C-H = 0.93-0.98\text{\AA})$ and refined using a riding model, with $U_{iso}(H) = 1.2 U_{eq}(C)$. The uncoordinated water molecule is disordered and their H atoms were not located. The water molecule was located in two positions with occupancies of 0.5.

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2005); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge the financial support of the National Science Foundation of China (NO. 20501008) and Guangdong Provincial Laboratory for Green Chemical Technology.

References

- Bruker (2005). SAINT, SMART (Version 6.0) and SHELXTL (Version 6.2). Bruker AXS Inc, Madison, Wisconsin, USA.
- Effendy, Marchetti, F., Pettinari, C., Pettinari, R., M. Ricciutelli, M., Skelton, B. R. & White, A. H. (2004). *Inorg. Chem.* **43**, 2157–2165.
- Effendy, Marchetti, F., Pettinari, C., Pettinari, R., Skelton, B. W. & White. A. H. (2003). *Inorg. Chem.* 42, 112–117.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Janiak, C. (1994). J. Chem. Soc. Chem. Commun. pp. 545-547.
- Lobbia, G. G., Bonati, F. & Cecchi, P. (1991). Synth. React. Inorg. Met. Org. Chem. 21, 1141–1151.
- Macleod, I. T., Tiekink, E. R. I. & Young, C. G. (1996). J. Organomet. Chem. 506, 301–306.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Shiu, K. B., Guo, W. N., Peng, S. M. & Cheng, M. C. (1994). Inorg. Chem. 33, 3010–3013.
- Tang, L. F., Wang, Z. H., Chai, J. F., Jia, W. L., Xu, Y. M. & Wang, J. T. (2000). Polyhedron, 19, 1949–1954.
- Tang, L. F., Wang, Z. H., Chai, J. F., Leng, X. B., Wang, J. T. & Wang, H. G. (2002). J. Organomet. Chem. 642, 179–185.
- Trofimenko, S. (1967). J. Am. Chem. Soc. 89, 3170-3177.